Infinite Series

Definitions:

- 1. Sequence: a list of numbers, in order, that follow a pattern
- 2. $f: N \rightarrow R$
 - A function that inputs natural numbers and maps them to real numbers

Natural Numbers

3. Series: the sum of the sequence

Examples of Infinite Series:

- 1. 1, 2, 3, ...
- 2. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$... Zeno's Paradox
- 3. 1, 1, 2, 3, 5, 8, ... Fibonacci Sequence
- 4. 1, -1, 1, -1, 1, ... Alternating Yoyo (class name)
- 5. $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$ Harmonic Series
- 6. $l_1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots$ Alternating Harmonic Series

Arithmetic Series:

$$f(n) = f(n-1) + d$$
 Recursive

$$f(n) = f(0) + dn$$
 Explicit

where d is the common difference

Geometric Series:

$$f(n) = f(n-1) * r$$
 Recursive

$$f(n) = f(o) * r^n$$
 Explicit

where r is the common ratio

Examples of Arithmetic and Geometric Series:

1. Explicit Arithmetic

$$f(n) = 5 + 2n$$

$$\{5, 7, 9, \ldots\}$$

2. Explicit Geometric

$$f(n) = 5 * 2^n$$

Derivation of Geometric Series:

$$\begin{split} S_n &= l + r + r^2 + \ldots + r^n \\ rS_n &= r + r^2 + r^3 + \ldots + r^{n+l} \\ (l - r)S_n &= (l + r + r^2 + \ldots + r^n) + (r + r^2 + r^3 + \ldots + r^{n+l}) \\ (l - r)S_n &= l - r^{n+l} \\ S_n &= \frac{l - r^{n+l}}{l - r} \text{ where } -l < r < l \text{ as } n \to \infty \end{split}$$

We know that $r^{n+1} \to 0$ as $n \to \infty$. Therefore,

$$S_n = \frac{1-0}{1-r}$$
$$S_n = \frac{1}{1-r}$$

Example of Geometric Series:

1. When $r = \frac{1}{3}$, the series looks like

$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots + \frac{1}{3^n}$$

Therefore,

$$S_n = \frac{1}{1 - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2}$$

2. When $r = \frac{2}{3}$, the series looks like

$$1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \dots$$

Therefore,

$$S_n = \frac{1}{1 - \frac{2}{3}} = \frac{1}{\frac{1}{3}} = 3$$

The Comparison Test:

If you have two positive sequences a_n and b_n , and sequence a_n has terms smaller than b_n and Σb_n converges then Σa_n converges.

If you have two positive sequences a_n and b_n , and sequence b_n has terms larger than a_n and Σb_n diverges then Σa_n diverges.

Definition of an Alternating Series:

$$(-1)^n * positive series$$

Example of the Comparison Test:

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$b_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

We know that Σb_n diverges and b_n has larger terms than a_n , therefore, Σa_n diverges.

Solving Series in Physics:

Physicians will tell you the following,

$$S = 1 + 2 + 3 + \dots = -\frac{1}{12}$$

Here is the proof behind it. Given

$$S_1 = 1 - 1 + 1 - 1 + \dots$$

$$S_2 = 1 - 2 + 3 - 4 + \dots$$

We can add $S_1 + S_1$

$$S_1 + S_1 = 1 - 1 + 1 - 1 + \dots + 1 - 1 + 1 - \dots$$

$$\frac{1}{1+0+0+0+\dots}$$

We can see that

$$S_I+S_I=I+\theta+\theta+\theta+\dots$$

$$2 S_1 = 1$$

$$S_1 = \frac{1}{2}$$

We can add $S_2 + S_2$

$$S_2 + S_2 = I - 2 + 3 - 4 + \dots + I - 2 + 3 - \dots$$

$$1-1+1-1+...$$

We can see that

$$S_2 + S_2 = I - I + I - I + \dots = S_1$$

$$2 S_2 = S_1$$

$$S_2 = \frac{1}{4}$$

Now we can subtract $S - S_2$

$$S - S_2 = I + 2 + 3 + 4 + \dots$$

 $-I + 2 - 3 + 4 - \dots$

$$0 + 4 + 0 + 8 + \dots$$

We can see that

$$S - S_2 = 4 S$$

in see that
$$S - S_2 = 4S$$

$$S - \frac{1}{4} = 4S$$

$$-\frac{1}{4} = 3S$$

$$S = -\frac{1}{12}$$

$$-\frac{1}{4} = 3S$$

$$S = -\frac{1}{12}$$